

QURAS BLOCKCHAIN
Audit Report

Conducted in Jan 2020

1. Executive Summary
QURAS is a secret contract platform that fulfills privacy protection needs. TECHFUND, a
global technology accelerator which supported several hundreds of startups and large
companies’ new businesses in various domains worldwide mainly from technology aspect,
had also conducted security audits and was asked to specify the issues from QURAS team.
There were multiple low level issues and note level issues. QURAS team responded to the
issues and TECHFUND verified the source code again on Github to make sure that the
issues were fixe.

2. Scope
ⅰ. Windows build (.exe)
We checked the dll and exe files generated for monkey testing and possible scenarios like
DLL hijacking, strings exposed, files being accessed during run time, network interactions
and so on.

ⅱ. Blockchain Source Code
The target was provided by the QURAS team as a repository
https://github.com/quras-official/ . The code includes several third party dependencies like
libSodium, levelDB and so on.

ⅲ. API Source Code
We also tested the API source code provided by the QURAS team as repositories
https://github.com/quras-official/quras-nodejs-api ,
https://github.com/quras-official/quras-backend-service . We performed security and
performance tests on the endpoints to find bottleneck APIs and security of the whole system.

3. Source Summary
Quras-cli , Quaras-GUI and Quras Wallet have direct dependency on QurasCore.

https://github.com/quras-official/
https://github.com/quras-official/quras-nodejs-api
https://github.com/quras-official/quras-backend-service

4. Issues and descriptions
Detailed Analysis and Suggestions [API Source code]

These are the results of detailed analysis and suggestions derived from it. There are a total
of 3 findings for API server.

Risk Level: Critical 0
Risk Level: High 0
Risk Level: Middle 1
Risk Level: Low 0
Risk Level: Note 2
Risk Level: None 1

4.1. Potential SQL Injection
Risk Level: Middle

It could be noted at many places SQL queries are generated on the fly, although the input is
from already stored IDs but another process that has access to local levelDb will be able to
execute SQL injection with access rights of the QURAS Blockchain`s process user.

It is suggested to use connection.escape while handling any query generation.

api-service > routes > v1 > address > 126
api-service > routes > v1 > addresses > 87
api-service > routes > v1 > assets > 54
api-service > routes > v1 > txs > 89

Fixed
The issue was handled using mysql escape function provided by the library to prevent any
potential injection to happen. TECHFUND verified that all queries generated on the fly were
handling variables properly and no potential case of injection is now possible.

4.2. Static content served via API server
Risk Level: None

API server is being used to serve static content, NodeJS is known to be bad performing to
server static content as compared to Nginx. It is suggested to use a static server in
production else it can lead to server performance bottleneck.

Fixed
TECHFUND verified that proper Nginx configuration is now being used to prevent any static
content being served by Node.JS server.

4.3. SQL Connenction bottleneck
Risk Level: Note

There is a significant perfomance degradation of the APIs because of repetitive connection
handshakes multiple times. It is suggested to create a ̀single` connection Pool during
server startup and share that across the platform, instead of connecting to the database
multiple times.

Fixed
TECHFUND verified that connection pools are being used to handle SQL connection and
APIs are no longer creating multiple connection requests to the database server.

Detailed Analysis and Suggestions [QURAS Blockchain / EXEs - DLLs]
These are the results of detailed analysis and suggestions derived from it. There are a total
of 3 findings for API server.

Risk Level: Critical 0
Risk Level: High 1
Risk Level: Middle 5
Risk Level: Low 0
Risk Level: Note 5
Risk Level: None 2

4.4. DLL High jacking
Risk Level: High

Dynamic-link library (DLL) side-loading is a popular cyber attack method that takes
advantage of how Microsoft Windows applications handle DLL files.
Windows allows applications to load DLLs at runtime. Applications can specify the location of
DLLs to load by specifying a full path, using DLL redirection, or by using a manifest. If none
of these methods are used, Windows attempts to locate the DLL by searching a predefined
set of directories in a set order.
It is possible for other applications to sideload DLL or corrupt the application by providing a
corrupted DLL higher in the search from Windows OS.

We noticed it is possible to sideload DLLs in QURAS GUI and QURAS cli application. As a
fix QURAS is suggested to check for DLL integrity and fix the location to prevent side
loading.

Fixed
TECHFUND was pleased to see that proper signature verification is now in place to
decrease the effect of this issue and DLL side-loading will not be an issue for the QURAS
binary.

4.5. Vulnerable Randomness
Risk Level: Middle

/dev/urandom is an insecure way of generating random string and has been known to cause
issues in the past. It is suggested to use more secure random number generators as
compared to the present method. (https://nvd.nist.gov/vuln/detail/CVE-2003-0094)

 quras-anonymous-library > Common > include > boost > uuid > detail > seed_rng.hpp

Fixed
TECHFUND verified that weak random number generator are now not being used and the
issue has been fixed by the QURAS team.

4.6. Prevent creating threads explicitly
Risk Level: Note

https://nvd.nist.gov/vuln/detail/CVE-2003-0094

Fixed
TECHFUND suggested a couple of methods and QURAS team implemented an overall
memory Stack limit on the processes handled by newly created threads to make sure the
binary does not behave abruptly in systems with low system configuration. TECHFUND finds
the fix satisfactory to handle the situation.

4.7. Prevent sleeping in the thread
Risk Level: Note

Threads are a limited resource, they take approximately 200,000 cycles to create and about
100,000 cycles to destroy. By default they reserve 1 megabyte of virtual memory for its
stack and use 2,000-8,000 cycles for each context switch. This makes any waiting thread a
huge waste.

It is strongly suggested to *not* use thread.sleep in the code and switch to Task Parallel
library.

Fixed
TECHFUND verifies that the QURAS team handled the thread sleeping and moved to a
more robust async-await / delay model.

4.8. Buggy comparison in wallet witness
Risk Level: Middle

Identical expressions should not be used on both sides of a binary operator. It is wrong by
design and should not be used in code to return a TRUE value. This will lead to completely
wrong equality of Witnessifo.

Fixed
TECHFUND verifies that this potential misleading code has been fixed and a clearer function
equality is implemented. This should help developers understand code in a better way and
prevent any potential issues.

4.9. Non required for loop
Risk Level: None

It is suggested to prevent “for loops” just to run a piece of code in a normal way. If this was
not intended by QURAS, it should be fixed from code sanity point of view.

Fixed
TECHFUND verified that the code has been fixed and ambiguity has been removed.

4.10. WebClient should be disposed
Risk Level: Note

The operating system can only handle having so many sockets (. WebClient) open at any
given time. Therefore, it is important to Dispose of them as soon as they are no longer
needed, rather than relying on the garbage collector to call these objects' finalizers at some
nondeterministic point in the future.

Similar behaviour should be corrected in
QurasCore > Core > InvocationTransaction.cs
QurasWallet > Cryptography > CertificateQueryService.cs

Fixed
TECHFUND verified that now proper handling webclient is in place and they are being
disposed off after the usage. This should help manage memory in a better way after
utilization of WebClient.

4.11. Potential memory overflow
Risk Level: Middle

Infinite recursion is possible in some cases in following code that may lead the recursion to
continue until the stack overflows and the program crashes.
As a rule of thumb it is always suggested to provide a method to break out of recursion.

Fixed
TECHFUND verifies that the code has been fixed and no longer is an issue for overflow to
happen.

4.12. Wrong removal of Pan History
Risk Level: Middle

It looks like a faulty logic to remove from pan_history, potentially this will lead to logic errors
and might not work as intended. It is suggested to verify the bitwise operator of the if syntax.

Fixed TECHFUND verifies that the logic is now correct for pan_history removal.

4.13. Dependence on weak Randomness
Risk Level: Note

QURAS utilizes weak randomness at a lot of places and is strongly suggested against it. The
algorithm used by the implementation of System.Random is weak because random numbers
generated can be predicted.

Quras Network > Local Node

Quras Network > Remote Node

Quras Core > Ring CT

Fixed

TECHFUND verifies that the code for RingCT / Local Node and Remote Node now handles
random generators properly and dependence on weak randomness has been removed.

Apart from above we found that code practices can be improved and optimized overall, and
can be simplified a lot, but they don’t portray any security threat, but QURAS team might
have to work towards making code more cleaner. Some areas of improvement might be
avoiding big methods and many parameters, avoiding types that are too long, removing
dead code and dead types, handling errors in a better way to output relevant error code and
so on.

